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Abstract

Novel integrable systems of coupled first-order autonomous PDEs in 1 + 1
dimensions (space x and time #) are presented. Integrable covariant 2-vector
and 3-vector PDEs, as well as higher-order integrable PDEs for a single, or
a couple, of scalar-dependent variables (including an extension of the sine-
Gordon equation and a remarkably neat, highly nonlinear third-order PDE),
are also obtained by appropriate reductions of the basic matrix equations. The
Lax pairs that characterize the integrable character of the basic matrix PDEs are
also exhibited, as well as their single-soliton solutions. These solitons generally
exhibit the boomeronic (and, less generically, the trapponic) phenomenology,
namely they do not move uniformly, but rather (in an appropriate reference
system) come in from one end in the remote past and boomerang back to that
same end in the remote future (hoomerons), or are trapped to oscillate around
a value fixed by the initial data (trappons).

PACS numbers: 02.30.1Ik, 02.30.Jr

1. Introduction

In a previous paper [5] we reported several novel integrable systems of coupled evolution PDEs
of nonlinear Schriodinger type (in 1 + 1 dimensions, space x and time ¢) featuring solitons
moving with time-dependent velocity: displaying typically, in an appropriate reference frame,
the boomeronic phenomenology [2, 3], namely, even when single, coming in the remote
past from one side and boomeranging back to that side with the same speed in the remote
future; and occasionally displaying instead the trapponic phenomenology, namely, even when
single, being trapped to oscillate around a fixed point (determined by the initial data). In the
present paper we report analogous (to the best of our knowledge, also novel) results for a class
of integrable autonomous nonlinear coupled evolution PDEs in (1 + 1) dimensions that are
obtained in the standard way from a (‘Lax’) pair of linear matrix ODEs the coefficients of
which are first-degree polynomials in the spectral parameter. This entails that the system of
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integrable PDEs discussed herein features only first derivatives both with respect to the time
variable ¢ (as the PDEs of nonlinear Schrodinger type) and as well with respect to the space
variable x (in contrast to the PDEs of nonlinear Schrédinger type, that are of second order with
respect to the space variable x—of course this characterization refers to the main dependent
variables and to the basic structure of the coupled evolution PDEs under consideration, which
are of course susceptible of being rewritten as higher-order equations via the elimination of
some of the dependent variables). Some of the (systems of) PDEs we consider below are
obtainable by merely eliminating certain terms in the (systems of) PDEs already considered in
[5]; but there also are additional integrable (systems of) PDEs not obtainable in this manner,
because some reductions which are permissible in the present context are not permissible in
the context of the (systems of) PDEs of nonlinear Schrodinger type treated in [5]. Our main
purpose in this paper—as indeed in [S]—is to display several integrable nonlinear (systems
of) evolution PDEs in a manner as user-friendly as possible, having in mind the possibility
that these findings be eventually utilized by researchers mainly interested, and knowledgeable,
on using them in applicative contexts. We also display the single-soliton solutions of the
basic matrix equations, as well as the Lax pair that provides the basic structure subtending the
integrability of these matrix PDEs. Of course, as in the case of the results of [5], the availability
of the integrability machinery for the evolution equations treated herein entails the possibility
of obtaining via standard techniques many other relevant results, such as conservation laws,
Hamiltonian structures, Backlund transformations, and so on; and moreover to exhibit the
single-soliton and multi-soliton solutions for reduced evolution equations and to perform
detailed analyses of their shapes and behaviours. Such results shall perhaps be provided in
subsequent papers, especially for equations that turn out to be of theoretical and/or applicative
interest.

In the following section 2 we report the evolution equations of the class indicated above;
in the following section 3 we report, and tersely discuss, their single-soliton solutions; in
section 4 we tersely report the Lax pair that underlies the integrable character of the systems
of PDEs considered in this paper; and finally in section 5 we offer some final remarks.
To avoid excessive repetitions, we generally assume the diligent reader to be familiar with
the introductory remarks, the basic results and the notation of [5], referring hereafter to the
formula (x) of that paper as (I.x). But we also cater to the casual reader who is only interested
in browsing through the evolution equations covered by our treatment, so we display below
some representative examples of them even when we might just mention how they can be
obtained from the analogous (more general) equations reported in [5]; indeed we make an
effort, by providing below a definition of all the notation we employ (albeit with some quite rare
exceptions, when we refer the reader back to [5]), to make the present paper as completely self-
contained as possible, while also respecting the imperative to avoid unnecessary repetitions.

Let us finally mention that a special case of the integrable system of coupled autonomous
first-order PDEs treated in this paper is the well-known one [10, 11] describing the nonlinear
interaction of three resonant waves. In that case the approach described in [5] and herein yields
a novel class of solitonic solutions of that system. These results were considered sufficiently
remarkable to be singled out and reported separately [6].

We end this introductory section by listing below the number of some of the equations
that might be immediately looked at by the hasty browser who wishes to get an idea of the
integrable coupled PDEs identified in this paper (note that we strived, perhaps at the cost of
some repetitions, to present these results so as to allow the alert reader to jump immediately to
these equations and understand their significance, including the comments that follow them—
for instance, concerning their dispersive, or nondispersive, character, whenever we do include
such a discussion): (40), (41), (53), (54), (61), (75), (78), (83), (86), (89), (91), (92), (100),
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(102), (106), (109), (114), (118), (126). And we exhibit here a few integrable PDEs, among
those obtained below by additional reductions, that we deem particularly interesting (hereafter
superimposed arrows denote 3-vectors, underlined symbols denote 2-vectors, and subscripted
independent variables denote partial differentiations):
o the boomeron equation (see (35): here ¢(x, ) = p,(x,t) and ii(x, 1) = v, (x, 1) are the
dependent variables and the two 3-vectors a and b are constant)

‘ Wy =dAi+ob+7 A, Ze=bAu, (1a)

S

¢r =

S

<l

Pr =0 - Uy, th:a/\ax"'pxxl;"'(l;/\ﬁ)/\ﬁx’ (1b)

e the modified boomeron equation (see @D):_ here ¢(x,t),u(x,t) and Z(x,t) are the
dependent variables, the two 3-vectors a and b are constant and s is an arbitrary sign)
<p,:l;~iix, ﬁ[:c_i/\ﬁ+(pxl;+2/\ﬁ, Zx:s<p7)/\1}, )
e another covariant 3-vector PDE (§ee (120): here u(x, t) and zZ(x, t) are the dependent
variables, the two 3-vectors a and b are constant and s is an arbitrary sign)
i =anii+b-i)b— (b-b)i, +7 Al (3a)
2o =s(b- )b Al (3b)

e the zoomeron (or Calapso) equation (see (37): here Z(x, t) is the dependent variable)
Zy
(87 — o7) <7> +(Z% =0, &)

e the vector zoomeron (or vector Calapso) equation (see (43): here the scalar ¢ (x, t) and
the 2-vector u(x, t) are the dependent variables)
(07 —87)p = —u-u, Uy = Uy, (5)
e another interesting integrable PDE (see (86): here the five dependent variables are
conveniently organized as a scalar, ¥ (x, t), and the four components of two 2-vectors,
v(x,t) and V(x, ), and s is an arbitrary sign)
(7 =)y =—v-V, v =YY, V, =s¥, (6)
e a highly nonlinear third-order PDE (see (69): here @ (x, t) is the dependent variable, and
D, =k, 2 + w, % are three linear differential operators, with k, and w, being arbitrary

rn
constants)

(D1 D, D3®)* = (D D,®)(D,D39) (D3 D, ®), (7N
and another avatar (see (66)) of this PDE, which obtains via the position W(x,t) =
D, ®(x,t) and reads as follows (with n having a fixed value, n = 1 orn = 2 or
n =3 mod (3)):

D, 1D, V)? Dy W) (D1 ¥
Dnlog|: (Dp-1Dp1 V) i|:( n—1Y) (D )’ ®)
(Dp—1¥)(Dp1 V) (Dn-1Dpn1 V)

e a generalized sine-Gordon equation (as a system of two coupled PDEs, see (96): here
0(x,t) and p(x, t) are the two dependent variables, s is an arbitrary sign)

ex Px Gt Pt
— , 9
sn2@)  cos2@) OV

pur = —0yp; tan(0) + 6, p, cot(9). (9b)

1
Oy — Oy +tan(0) o, + cot(0) pyy = _ES exp(2p) sin(20) +
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We believe these integrable equations to be new, except for the boomeron equation (1)
(see [2, 3]), the zoomeron (or Calapso) equation (4) (see [3]), the vector zoomeron (or vector
Calapso) equation (5) (see [9]) and the generalized sine-Gordon equation (9) (which can
be transformed into the classical isothermic system [9] via an appropriate transformation;
we are grateful to W K Schief for pointing this out); as already mentioned, a more detailed
investigation of some of them than that reported in this paper will be published separately if
their theoretical and applicative interest will warrant it.

2. Integrable PDEs

The mother of all the evolution equations considered in this paper is the following integrable
matrix PDE in 1 + 1 dimensions (see (1.4)):

0, —[CY, 0] -0o[CY, 0,] = —a{W, 0}, (10a)
w, =[C?V, 0?]. (10b)

Here and throughout we use the following standard notation for the commutator and the
anticommutator:

[A,B]= AB — BA, {A,B} = AB + BA. (11)
The main dependent variable O = Q(x, t), the auxiliary dependent variable W = W(x, ¢)
and the constant (space- and time-independent) quantities C©, C") and o are all N x N
matrices (namely, square matrices with N lines and N columns), having the general block

structure
NO x N® NG « NO
(N() x N&® N x N())’ (12)
where of course N = N® + N and N, N are two, a priori arbitrary, positive integers.
In particular o, C©, CV and W (x, 1) are block-diagonal, while Q (x, ¢) is block-off-diagonal:

1 0
a:Q)_J, (13)

) cH®
) — -
C = ( 0 C(j)(_)) ) J = 17 2» (14)

0 Q(+) w® 0
0= <Q(_) 0 ) , W= < 0 W(‘)) . (15)

Note that these definitions entail that the block-diagonal matrices CY) and W (x, t) commute
with o, while the block-off-diagonal matrix Q(x, t) anticommutes with o:

[CYP,0]=[W,0]={Q,0}=0. (16)
Hereafter, without significant loss of generality, we assume validity of the boundary condition

W(—o00,t) =0, 17)
entailing (see (10))

trace[W (x, t)] = 0. (18)

This matrix evolution equation (10), being a first-order PDE, is the simplest one of the
class of integrable matrix evolution equations introduced and discussed in [5]. As already
mentioned above, we refer to this paper [5] for the basic analysis of the integrability of this class
of nonlinear PDEs. Additional standard properties of this class of integrable PDEs, such as
conservation laws, Hamiltonian structures, Backlund transformations, nonlinear superposition
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formulae, multisoliton solutions and so on, will perhaps be treated in subsequent papers. In
the present paper we merely display the simpler integrable (systems of) PDEs belonging to
the class under consideration here, see (10), as obtained by applying four standard reductions
to this class of PDEs and by moreover restricting attention to small values of the integers N
and N (and often also performing additional reductions, including some yielding higher-
order PDEs); and for this class of matrix PDEs (without reductions) we exhibit and tersely
discuss the corresponding single-soliton solution and also report the Lax pair that underlies
its integrability. Our hope is that the following display of several, rather neat and presumably
novel, examples of integrable systems of coupled PDEs constitute a useful service to the
community of researchers interested in nonlinear phenomena, including in particular those
focussed on applications.
Let us now report, for future reference, two general remarks.

Remark 2.1. Via the positions
oCV =, oWx,t) = W(x, 1), (19)

the matrix PDE (10) can be rewritten in the following equivalent form:

0, +10,C"1—{0,,C} =10, W], (20a)
W, =I[C, 0°]. (20b)

Remark 2.2. Via the linear coordinate transformation
X =ax +brt, f=cx+dt (21a)

with ad — bc # 0, entailing

0 0 0 0 0 0
R L A 21b)
at 9X at 0x 9x at
the above PDEs, (20), become (here and in the following 1 denotes the unit matrix)
dy_ by _ 4t v _cO
El—cC,Q; + El—aC, Oz =10, W—-C"], (22a)
cWi +aW; = [C, 0?). (22b)

Note that the matrix coefficient C© could be eliminated by replacing, in these two
equations (22) W with W + C©. But we prefer to keep the constant matrix C® in (22), and
throughout, and to impose instead the boundary condition

W(—o00,1) =0, (23)
see (17) and (19).

Via (13), (14) and (15) the N x N matrix PDE (10) reads as follows:

+
Qﬁ ) _ [C(O)(:t)Q(ﬂ:) _ Q(:t)C(O)@)] F [C(l)(:t) Q)(ci) _ Qiﬂ:)c(l)(?)]

=F [W(:t)Q(i) + Q(:‘:)W(JF)]’ (24a)
WX(:E) — [C(l)(i), Q(i)Q(:F)]. (24b)
Here of course Q) = Q) (x,t) is an N x N® rectangular matrix, and likewise

O = QW (x,t)isan N® x N rectangular matrix; W= = W (x, t) isan N x N&)
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square matrix, and likewise W& = W®(x, ) is an N® x N® square matrix; C)®
are, respectively, N x N® and N© x N constant square matrices. The (generally
rectangular; but see below) matrices 0 (x, t) are the main dependent variables, and the
reductions relate the matrix Q™ (x, t) to the matrix Q) (x, t), which is hereafter denoted as
follows:

0 (x, 1) =U(x,1). (25)

The square matrices W® (x, t) are the auxiliary dependent variables. These matrices are
defined by (24b), supplemented by the boundary condition (see (17))

WH (=0, 1) =0, (26a)
that, together with (24b), entails that these matrices are traceless (see (18)):
trace[ W™ (x, 1)] = 0. (26b)

To define the reductions it is convenient to introduce the following diagonal N x N matrix S,
the block-diagonal structure of which reads

S® 0
. ( . S()), (27a)

with the two diagonal matrices S® and S~ made up, without significant loss of generality,
just of ‘signs’,

S = diag (s, 557, .. 50, [s&) =1. (27b)
Note that this definition of the diagonal N x N matrix S entails the condition
$?=1. (27¢)

The four main types of reductions are characterized respectively by the four conditions
(see (25))

0, 1) =U(x, 1), 0P (x,1) =1, (28a)
0 x, 1) =U(x, 1), 0P (x, 1) = SPU(x,1)$, (28b)
09 (x, 1) =Ulx, 1), 0P (x,1) =sU*(x,1), s =+, s2=1, (28¢)
0 x, 1) =U(x, 1), 0 (x, 1) = SPUT (x,1)87. (28d)

Here of course the N x N® matrix U (x, ) is the dependent variable of the equations we
shall display (generally, for small values of N*), componentwise), and the appended symbols
1, * respectively T in the last three of these formulae denote Hermitian conjugation, complex
conjugation respectively transposition. Note that the first and third conditions (28a) and (28¢)
are only applicable when the matrices Q®, see (15), are square matrices, namely they require
that NV = N = M. (Actually the first reduction is also applicable in the rectangular case
N©) £ N® | but the corresponding results do not seem sufficiently interesting to warrant
their display.)

In the following subsections we discuss these four main types of reductions, of
course requiring that they be compatible with the evolution equation (10) (this shall entail
appropriate restrictions on the constant N x N matrices C® and CV). The first of these
reductions (28a) transforms back the Zakharov—Shabat (matrix) spectral problem, see (144a)
below, into the Schrodinger (matrix) spectral problem, hence the corresponding results were
essentially covered in our original papers of almost three decades ago [2, 3]; therefore
the treatment given below of this case is extremely terse, being included here mainly in
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order to allow some useful comparisons. The second and third of these reductions, (28b)
and (28¢), were already considered in the context of the PDEs of nonlinear Schrédinger type
on which we focussed in [5]; hence their treatment can also be rather terse, see below, since the
corresponding findings are essentially special cases of results already reported in [5], except
for the possibility, of which we take advantage below, to introduce in the present context more
additional reductions than were permissible in the case treated in [5]. The last reduction (28d)
is instead new since it was not applicable to the evolution PDEs of nonlinear Schrodinger type
treated in [5].

2.1. Reductions of first type

The first type of reductions (see (28a)) requires that N ) = N® = M and reads
07w, n=Uxn,  QYan=1  WOuwn=-W00=Wao.
(29a)
It is applicable provided the constant M x M matrices C/)® satisfy the restrictions
CcOC) — cO® — cO cHE — _cO®H — cD (29b)
The general integrable system of matrix PDEs yielded by this reduction reads
U, =€, U1+{c, U} =W, U], (30a)
W, =[CP, U] (30b)

To make contact with previous formulations [2, 3] we set

Ux,t) = Vi(x,t), (31)
so that (30a) with (26a) entails
w=[c", v, (32)
and one obtains thereby from (30a) a single PDE for the M x M matrix V (x, t):
Vi = [CO, V] = (CV, Vi) +[ICD, V], Vi, (33)
For M = 2 the standard position in terms of the three Pauli matrices o,
Vix,t) = %[p(x,t)+7)(x,t)-3], c© =—%a.&, c® =—%B.3, (34)

whereby one introduces the two constant 3-vectors @ and b and, as dependent variables, the
scalar p(x, t) and the 3-vector ¥(x, t), reformulates (33) as the following boomeron equation
2, 3]:
pe=Db iy, (35a)
Vyr = @ A Uy + pexh + (b A D) A Dy (35b)
While we refer to the literature [2, 3] for further discussions of this integrable PDE, we outline

below the derivation from this equation (35), in the case when the two constant 3-vectors d
and b are orthogonal,

a-b=0, (36)

of the so-called zoomeron (or Calapso) equation. Let us recall that this integrable PDE,

(97 —37) (27) +(ZH =0, 37)
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which was called ‘zoomeron’ equation [3, 4] by linguistic analogy with the ‘boomeron’
equation because for the (scalar) dependent variable we used the notation Z = Z(x, t), was
largely employed by us and by others to illustrate the peculiarities of its solitonic sector via a
movie, produced in the early 1980s by Chris Eilbeck, that displayed some of its two-soliton
solutions. It was subsequently noted that this PDE (37) had been introduced almost a century
ago by Pasquale Calapso in the context of differential geometry (see [9], and the references
quoted there).
To perform this derivation we set, consistently with (36),

i = aa, b = bb, e=anb, (38)
introducing thereby the three orthogonal unit 3-vectors @, b and &, and the two constant scalars
a and b. We then set

V(x, 1) = ax,0)a+plx, b+ y(x, 1), (39)
and we thereby rewrite the boomeron equation (35) as the following system of four coupled
first- and second-order PDEs:

pPr = bﬂx’ Oyt = baﬂ)(’

/er = —ayx+ bioxx - %b(az + Vz)xv Vxr = aﬁx + byﬁx

We then set @ = 0 (and also, for simplicity, b = 1), so that (40) becomes (after x-
integration of the third of these PDEs)

(40)

i = B, B = pr — 5 +7P), oy = aps, Yar = ¥PBr. (41)
We then set, consistently with the first of these four PDEs,
lo(xvt):(px(xvt)» ﬁ(x’t):(pt(-xvt)v (42)

and rewrite the other three PDEs (41) as follows:
(07 —87)p = —u-u,

where u = 27!/2(a, y) is a two-dimensional vector. This is the so-called vector zoomeron
(or vector Calapso) equation [9]. If we moreover set (consistently with this system of PDEs,
(43)) the dependent variable « to zero, a(x, t) = 0, then this system of PDEs (43) takes the
simpler form

Uy = UPxrs (43)

(atz - 33)(/) = _Vzv Yxt = V@xts 44)
from which we get the single fourth-order PDE
(o7 —7) (V—) + () =0, (45)
4

which coincides with the zoomeron (or Calapso) equation (37) up to the notational
identification y (x, t) = Z(x, t).

2.2. Reductions of second type

The second type of reductions (see (28b)) reads (see (1.23) and (1.25))
07, =Ux,1), QW (x, 1) = YU x, S, (46a)
WE(x, 1) = —=SEWHH(x, S®. (46D)

It is applicable provided the constant matrices C/)™® satisfy the restrictions (see (1.21))
CcWHE — _(_)jS(:t)C(j)(:t)Ts(:'E)7 j=0,1. (46¢)
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The general system of matrix PDEs yielded by this reduction reads (see (1.24))

U, — [C(O)(—)U _ Uc(o)(+)] + [C(l)(—) U, — ch(l)(+)] = WU + UW(+), (47a)
W;+) — [C(l)(+), S(+)UT5(*)U]’ (47b)
w) = [C(l)(*)’ US(+)UTS(7)]. (47¢)

Let us now consider a few special cases, corresponding to specific choices of the two positive
integers N and N7,

For N® = 1 and N© = D the matrix evolution equations (47) can be reformulated as
follows:

i —COw+cVu, =ww, (48a)
w, =[CcV, wwTs). (48b)
Here the (column) D-vector #” = ’(x, t), having the D components u,, ..., up, is the main
dependent variable, the Hermitian conjugate (row) D-vector w = w(x, t) has of course
the D components u7, ..., u},, and the D x D matrix W = W (x, ) is the auxiliary variable,

uniquely defined by the last equation (48b) together with the usual boundary condition,
see (26). These evolution equations (48) obtain from those written above (47) via the
assignments

U, ) = (x,0), WO, 1) = W, n), W x, 1) =0, (49a)
SH =189 =5, CH® = ), CHE) — ) 4 o (49b)
with c\/) being scalar constants, which imply that the two constant D x D matrices C that
appear in these evolution equations satisfy the ‘Hermiticity conditions’

CY = —(=)/scits, ji=01, (49¢)
and the auxiliary dependent variable W = W (x, t) (which is also a D x D matrix) satisfy the
analogous ‘Hermiticity condition’

W= —SW's. (49d)
The constant D x D matrix S appearing in these evolution equations is diagonal and it is made
up of (a priori arbitrary) signs:

S = diag[sy, ..., spl, st =1, k=1,...,D, (50)

and moreover, without significant loss of generality, we can assume the two constant D x D
matrices CY) to be traceless,

Trace[CY] = 0, j=0,1. (51)
For D = 2, we make the assignments
— _ M](.x,t) _ iZ(x,t) _Slw(xal)
e = (uz(x,t)) ’ W= <Szw*(x,t) —iz(x,1) )’ (52)
(5 0 o _ ia s1d a _ —b  s1b
S B (O S2> ’ C - —Szﬁ* —ia ’ C o S2];* b ’ (52b)

which clearly satisfy the Hermiticity requirements (49), provided the two constants a and
b, as well as the auxiliary dependent variable z = z(x,t), are real, a = a*,b = b*,
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z(x, 1) = z*(x, t) (as we hereafter assume), while the other two constants, & and b, as well as
the other auxiliary dependent variable w = w(x, t) need not be real. Thereby these evolution
equations (48) take the following form:

upy —iauy — siduy — buy +sll~7u2,x =1zuU| — S Wua, (53a)
Uy, +iaus +sod*uy +buy  +55b*uy , = —izuy + sow*uy, (53b)
wy = 2bsysourus + bisilur[* — s2lual?), (53¢)
2 = 2Im [bufu,], (53d)

with the latter two equations supplemented by the boundary conditions

w(—o00,t) = z(—00,t) = 0. (53e)
Note that, without significant loss of generality, one can set a = 0 (since the corresponding
terms in (53a) and (53b) can be eliminated via the transformation u;(x,t) — u’j(x, 1) =

uj(x, t)exp (i%x)). If one moreover sets b = 0, which via (53d) and (53¢) entails z(x, 1) = 0,
this system of PDEs takes the simpler form

Uy, — s1auy — buy , = —sjwuy, (54a)
U+ 52a%uy + buy, = s,w*uy, (54b)
Wy = 2bsisau U, (54¢)

If one moreover sets @ = 0 (or eliminates this constant by introducing the dependent
variable

Dx, 1) = wx, 1) —a, (55)

renouncing thereby to the requirement that @(x, ¢) vanish at x = —o0), then this system of
PDEs becomes essentially identical (via a transformation of type (21)) to the standard system
of PDEs describing the resonant interaction of three waves, as discussed in [6] (and, in the
real case, below).

For a # 0, this system is instead easily seen to be dispersive, namely to possess (in the
linear limit obtained by setting w(x, t) = 0) the solution

uj(x,t) = Ajexpfilkx — w(k)t]}, j=12, (56a)
with the ‘relativistic’ dispersion relation
(k) = £/ b2k? + s157|al?. (56b)

Hence this system yields a dispersive deformation of the standard (nondispersive) system
describing the resonant interaction of three waves [10, 11] (certain new solutions of which
have been recently introduced in [6] and [8]). This deformation is mathematically rather
trivial (since it corresponds just to a trivial change of dependent variable, see (55)), but it
might present some phenomenological interest, and if we ascertain this to be the case we shall
provide elsewhere a discussion of this system and its solutions.

Let us also note that, if @ is real, a = a*, the system (54) also admits solutions in which
the dependent variables u (x, 1), u(x, t) and w(x, t) are all three real.

The display of other special cases of the integrable system (53) is left as an easy exercise
for the diligent reader, who might find some guidance by consulting the analogous treatment in
[5]. We present however here, for the special case with @ = 0 and all the dependent variables
real (uf = uy, uy = up, w* = w; and we also set b = 1 for simplicity), the derivation of a
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higher-order equation for a single dependent variable. Actually we prefer to do this for the
following real integrable system,

Dnun = ZnlUn+1Un+2, n = 17 21 3 mod (3) (5761)
Here and throughout the three linear differential operators D, are defined as follows:

a d
D, =ky— +w, —, (57b)
ot 0x

with k, and w, being arbitrary real constants and the three coupling constants g, as well
real. Note that this system appears more general than (54), but in fact can be reduced to it
(with @ = 0) via the linear coordinate transformation (21), possibly augmented by appropriate
(constant) rescalings of the three dependent variables u,, (x, ¢). Note that this system is just the
real subcase of the three-resonant-interacting-waves equation treated in [6, 8].

Clearly this system of three coupled first-order PDEs (57) entails the equations

Dnuﬁ =2g.u, with U= usls3, (58)
and this implies the relations

gn D,,,ufn =gnm Dy,ui. 59)
This suggests introducing the three new dependent variables g, (x, t) by setting

[ (3, DF = gugn (x, 1), (60)
so that these new dependent variables satisfy the PDEs

Dygn = 28919293, n=1,2,3, (6la)
with

g =./818283 (61b)

The property D,q, = D,,qn, Which is implied by these PDEs (61a), suggests moreover
to introduce the three new dependent variables 1, (x, t) via the positions

qn(x,1) = Dus1¥ni2(x, 1) = Dpsa Vi (x, 1), n=1,2,3 mod(3), (62)

and to obtain a PDE involving just one dependent variable.
There are two strategies to reach this goal. The first uses the two relations (implied by
this formula, (62))

qdm—-1 = Dm+11/fm’ qm+1 = Dmfl‘ﬂ[/m (63)

(where m is always defined mod (3) and it is fixed), as well as the formula

_ L (Dm—l Dm+1 1pm)2

4g% (Dyp—1Ym) (Dyns1Yrm)
implied by the two formulae (63) together with (61a) (used twice, once for n = m — 1 and
once for n = m + 1). It is then a matter of trivial algebra, by inserting in (61a) these three
expressions of the three quantities g, in terms of ¥,,, to obtain a single third-order integrable
PDE for the single quantity

U = 4g°Y,, (65)

Im (64)

namely

(Dmlem+1\IJ)2 i| _ 4g2(Dm71\p)(Dm+lw)

= . (66)
(Dm—l \p)(DmH \IJ)

D,, log |:
(Dm—l Dm+l \IJ)
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Note that this way of reducing the original system (57) yields just this single scalar PDE,
because the three different values the index m may take in (66) correspond merely to a
shuffling of the arbitrary parameters k,, @, and g, (see (57b)).

The second strategy is to observe that the relations (62) entail the formulae

Dn+11/fn71 = anll/fnﬂs (670)
qn—1 = anlﬁ-lv qn+1 = annfl» (67b)

and that these formulae (where 7 is always defined mod (3)) indicate that it is consistent to
introduce a new dependent variable ¢(x, t) such that

I/fn(-x’t) = Dn(p(x,t)» (6861)
gn(x,t) = Dy_1Dpr1p(x, t) n=1,2,3 mod(@3). (68b)

And the insertion of these expressions of the three quantities g, (x, ) in (61a) yields the single
integrable third-order PDE

(D1 D2 D3®)* = (D D>®)(D2D3®) (D3 D D), (69)
for the dependent variable
(x,1) =4g%p(x, 1). (70)

Note that this definition of the variable ® (x, ¢) entails, via the relations (68), the following
relations with the variable W (x, ¢), see (65):

W(x,1) = Dp®(x,1). (71)

The diligent reader will verify the consistency of this relation with the PDEs, (66) respectively
(69), satisfied by W (x, ) respectively by ®(x, t).

Let us conclude this discussion by noting that these results hold as well if the
definition (57b) of the three linear differential operators D, is generalized to read

d - =
D, =k, (— +v, - V) , (72)
at

where the three constant 3-vectors j),, are arbitrarily assigned and V is the standard
three-dimensional gradient operator, V = (&, %, a%) Moreover the integrability of the
‘three-interacting-wave’ (system of coupled) PDEs is as well known to hold even if the
definition (57b) is replaced by the more general definition (72) [11].

Finally, let us return to the general system (47), to consider the special case with
N® = N©) =2 Itis then convenient to parameterize the various matrices via the three Pauli

2 x 2 matrices o; and the unit 2 x 2 matrix 1 (hereafter often omitted), by setting

§® =1, §O) =1, (73a)
CO® — PO | & CH® — 2@ | 7 (73b)
U=+ @7, W =iwp® . 7, (73¢)

where we took advantage of the possibility of restricting consideration to traceless matrices
CP®H and WP, Here of course the superimposed arrows identify 3-vectors. Note that
the Hermiticity properties of these matrices, see (49), imply that the four constant 3-vectors
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T | as well as the two ‘auxiliary dependent variable’ 3-vectors w® = w®)(x, 1), are
all real:
T WDEHE* — ?>(j)(:|:)7 W(i)*(x’ ) = W(i)(x, 1. (74)

The evolution equations take then the following form of ten coupled first-order PDEs:

o =—-i709. 7+ PO iz w, (75a)

T, +ip 7O + POO N 7 OO L PO A 7 —ip7® + 7O A 7,
(75b)

7® = 5{7PV® ARe(p* @) + Im[(7 PP . @) ul). (75¢)

Here and throughout the symbol A denotes the standard three-dimensional vector product and
the symbol - the standard three-dimensional scalar product. The last equation must of course
be supplemented with the boundary conditions

7 (=00, 1) = 0. (75d)
Note that, in order to write these equations in a neater form, we introduced the following

notational changes:

PUE = 21 4 DO, =01, PE _ p® L o), (76)

Note that the reality properties (74) imply that the four constant 3-vectors 7”@ as well as
the two ‘auxiliary dependent variable’ 3-vectors 77 = 77 (x, 1), are all real:

7>(.i)(i)* — 7>(.i)(ﬂt)7 ?(i)*(x’ 1) = ?(i)(x7 7). (77)

These equations (75) are essentially special cases of previous results (see equations (34) of [5];
note that we changed the sign appearing in the right-hand side of (75d), which was misprinted
in [5]).

An additional reduction of the evolution equations (75) is permissible if, say, the two

3-vectors ")) vanish, @) = () = (, since one can then set ¢ = 0, 77* = 0,
and, for notational convenience, 7" @® = PO = PO+ POHH — PO — D+ 44

well as 777 (x, 1) = Z'(x,t) = [ Z(x, 1)]*, whereby the evolution equations (75) take the
following simpler form:

T+ POAR+iPOAT, = T AT, (78a)
7 =—sIm[(7V - 7" W] (78b)

The last equation must of course be supplemented with the boundary condition

Z(—00,1) =0. (78¢)
Note that the last two of these equations clearly imply that the 3-vector 72 = Z(x, 1) is
orthogonal to the constant 3-vector 7" (1:

7)(1) ° ?(-x» t) = O‘ (78d)

This system of five coupled PDE:s is easily seen to be dispersive, namely to admit (in the linear
limit obtained by setting z(x, t) = 0) the solution

ii(x, 1) = Aexplilkx — 0 ()11}, (79a)

with the function w (k) featuring three branches, a trivial one, w(k) = 0, and two generally
dispersive ones,

wk) = £kyV =70 = /GO T2 =2k FD - FO) + (FO . 5O, (79b)
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Note that if the two constant 3-vectors @ and 1 are orthogonal, y©@ -y = 0, the
dispersion relation (79b) has the standard ‘relativistic’ form, while if 77(0) vanishes, )7(0) =0,
the relation (79b) ceases to be dispersive (while if ¥V vanishes, ) = 0, the system (78)
ceases to be nonlinear).

An alternative reduction of the evolution equations (75) is permissible if, say, the two
3-vectors PP and PD® vanish, O = D® = 0 since it is then consistent
to assume that the 3-vector 2" (x, ) also vanishes, Z* (x,7) = 0, and that the remaining
dependent variables are all real:

lp(x, D] = p(x,1), [ (x, D" = u(x, 1), 7@ 0 =270 1) = 2(x, ).
(80)
Then the evolution equations (75) become the following (real ) modified boomeron equation:
@ =Db- i, (81a)
i =aAi+eb+7 Al (81b)
Zx =sgol;/\b7, (81¢c)

where we set for notational simplicity — 7 ©® = g = a*, V) = b = b*. The last of
these equations is always supplemented by the boundary condition (78c¢), which, together
with (81c), entails that the 3-vector Z(x, t) is orthogonal to the constant 3-vector b,

b-Z(x,t)=0. 81d)

Additional reductions of this system of evolution equations (81) are possible (and interesting).
They are obtained by assuming to begin with that the two 3-vectors a and b are orthogonal,
a-b=0, and by then introducing the three orthogonal unit 3-vectors a (parallel to a =aa),
b (parallel to b = bIQ) andé =aAb (orthogonal to both @ and b), as well as the components
of the two 3-vectors i(x, t) and Z(x, t) along these three unit 3-vectors:

u(x,t) =ul(x,t)&+u2(x,t)13+u3(x,t)6, (82a)

Z2(x, 1) = z1(x, D)a + z3(x, 1)e. (82b)

Then the evolution equations (81) read as follows:

@ = buy,, (83a)
Uy = —Uz3, usy = bo, —auz +u1z3 — u3zy, uz = auy +uszy, (83b)
Z1x = sbous, 3¢ = —Sbou;. (83¢c)

A first reduction of this system is obtained by assuming that the constant a vanishes,
a = 0, by setting (merely for notational simplicity) the constant b to unity, b = 1, by then
introducing the new dependent variable ¥ (x, t) via the position (consistent with (83a))

Yy = @, Y = us, (84)
and by introducing the 2-vectors v(x, t) and V (x, t) via the assignment
v = (—uy, u3), V =(z3, 21). (35)

Thereby the evolution equations (83) take the following neat form:

Vit = Yox = —0- V, v, =%V, V. =sv¥v. (86)
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The way this system is obtained from the modified boomeron equation (81) is analogous to
that followed to reduce the boomeron equation (35) to the vector zoomeron (or vector Calapso)
equation (43). This justifies calling it modified vector zoomeron (or modified vector Calapso)
equation. This connection is moreover evidenced by displaying the Miura-type transformation
relating these two PDEs, which reads

u=v+V),  gu=ePutsiuty, € =5 (87)

Note that the assumption that the two 2-vectors v(x,t) and V(x,t) depend on the
independent variables x and ¢ only via the function ¥ (x, t), v = v[¢¥(x, )], V. = V[{¥(x, 1)]
(which is consistent with these equations (86) but amounts of course to a reduction) is
immediately seen to entail that the dependent variable ¥r(x,t) satisfies the sine-Gordon
equation

I/ftt - 1!fxx =K Sin(ﬂw + ), (88)

where K and « are two constants and > = —s.

The above integrable evolution equation (86) is a real system of five scalar equations
(actually, one PDE and four ODEs; and note that it does not feature any arbitrary constant; but
of course some such constants may be reintroduced by appropriate rescalings and translations
of the variables). It can be further reduced to a system of three scalar equations (one PDE
and two ODEs) if one assumes that, say, the dependent variables u; (x, f) and z3(x, ) vanish,
ui(x,t) = za(x, tr) = 0, an assignment which is clearly consistent with (86), see (85). The
integrable evolution equation takes thereby the reduced form

I//tt - w,rx = —uszi, Uz = 1//tzla l1x = SI//XM35 (89)

which is already known in the classical geometric context of the theory of isothermic
surfaces [9].

Another avatar of this integrable system of three coupled equations is obtained by replacing
the two dependent variables u3(x, ) and z; (x, t) with the two new dependent variables p (x, t)
and & (x, t) via the assignment

uz(x, 1) = explp(x, )] sin[ny (x, 1) +8(x, 1)], (90a)
z1(x, 1) = nexplp(x, H]cos[ny (x, 1) +8(x, )], (90b)
with n> = —s. There obtains the following equivalent version of the integrable system of

three coupled equations (89):

Yir — Yax = —31€Xp(2p) sin[2(ny + )], Ola)
o sin(nyr +8) + 8, cos(nyr +68) =0, 91b)
px cos(nyr +8) — &, sin(nyr +8) = 0. 91c)

This provides a generalization of the sine-Gordon equation, to which it clearly reduces if the
two dependent functions p(x,t) and §(x, ¢t) are assumed to be just constant, an assumption
which is clearly consistent with (91a) and (91¢) (indeed, it is implied by these two ODEs even
if one assumes to begin with only that p (x, #) and §(x, t) are both functions of the same single
variable, say p(x, t) = p[y(x, )] and §(x, t) = 5[y (x, )]).

The integrable system (89) of three coupled equations (one PDE and two ODEs) in
three dependent variables can moreover be reduced to a system of two coupled PDEs in two
dependent variables, in several ways. The most obvious ones are by solving either the first or
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the second equation for z; and inserting the resulting expression in the other two equations,
or by solving either the first or the third equation for u3 and inserting the resulting expression
in the other two equations. One obtains thereby easily the following four avatars of this
integrable evolution equation:

T(Ay — Avx)x — Te(Ay — Ayy) = TP A, Ai(Ay — Axy) =TT, (92a)
T Ay — N Ty = TALA?, Ar(Ay — Ayy) = =TT, (92b)
XAy — Ary)r — Xo(Ay — Agy) = — XA, Ar(Ay — Ayy) = XX, (92¢)
XAy — A Xy = XA A2, Ac(Ay — Agy) = XX, (92d)

To obtain these equations we used the following convenient redefinition of the dependent
variables:

Ax, 1) =np(x, 1), T(x,t) = nusz(x,1), X(x, 1) =z1(x,1) n* = —s,
(93)

which has the merit to display that the last two versions (92¢) and (92d) obtain from the first
two (92a) and (92b) via the simultaneous exchange of independent and dependent variables
x & t, X & T (which reflects a corresponding symmetry property of the system (89)). Let
us emphasize that these four systems of rwo coupled PDEs are equivalent, inasmuch as they
are all obtained from the same system of three equations (one PDE and two ODEs) (89); note
however that systems (92a) and (92c¢) include a third-order PDE and a second-order PDE,
while systems (92b) and (92d) include two second-order PDEs.

Another, possibly more elegant, avatar involving again only two independent variables
obtains from (91) via the assignment

O(x, 1) =ny(x, 1) +8(x, 1), 94)
and the observation that the two ODEs (915) and (91¢) then read
3 = —p tan(6), dx = px cot(). 95)

It is then easily seen that the system of three coupled equations (91) (actually, one PDE and
two ODEs) can be reformulated as the following integrable system of rwo coupled PDEs:

bupx O
sin2(0)  cos2(6)’
P = —0Ocp, tan(@) + 6, p, cot(0). (96b)

1
0,r — Oy +tan(@) p;; + cot(0) pyy = —Es exp(2p) sin(20) + (96a)

It is clear that this provides an integrable generalization of the sine-Gordon equation, to which
it obviously reduces when the dependent variable p(x, t) is replaced (clearly compatibly with
this system) by just a constant.

2.3. Reductions of third type

The third type of reductions (see (28c)) is only applicable to square matrices (N = N =
M) and it reads (see (1.38))

09 (x, 1) =Ulx, 1), 0P (x,1) =sU*(x, 1), (97a)
WO, 1) = W(x, 1), WP (x, 1) = —W*(x, 1), (97b)
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where again the scalar constant s can be, without loss of generality, just a sign, s = %, s> = 1.
This reduction is applicable provided the four constant square M x M matrices C)® satisfy
the conditions (see (1.39))

CcW=) — C(j), CcWHO® — (_)jc(j)*’ j=0,1. (97¢)

Note that these conditions imply no restriction on the two M x M matrices C,
The general integrable system of matrix PDEs yielded by this reduction reads (see (1.40))
U —[1cPU —ucP*1+[cVU, +U,CV*] = [WU — UW*], (98a)
W, =s[cV, uU~, (98b)

of course always with (26).
In the spirit of identifying the simplest nontrivial equations contained in this class one can
consider the special case of these evolution equations (98) with M = 2, by setting

(99a)

Ute.1) = <u1(x, o v(x, t)) ’

v(x,t) ux(x,t)

o _ [ ia a W _ (-b b
e ) e ()

with the restriction that the two constants a and b be real, a = a*, b = b*, and also real be
the auxiliary dependent variable z(x, t), z(x, t) = z*(x, t). Then the evolution equations (98)
take the following simple form:

W r) = ( iz(x, 1) w(x, t) > ’

—w*(x,t) —iz(x,1)

uyy —2iau; —2av — 2bu;  + 2bv, = 2izuy + 2w, (100a)
Uy, + 2 auy +2a%v + 2bus , +2b* v, = —2izuy — 2w*v, (100b)
v +a*uy — auy +buy , +buy, = —w*uy +wus, (100c)
w, = —s[b(jui|* — |uz]?) + 2b(uv* + ulv)], (100d)
zy = 25 Im [b(vu} + v*uy)], (100e)

of course with the last two equations supplemented by the boundary conditions (53¢). These
equations (100) are essentially special cases of previous results (see eqs. (42) of [5]; note
that we changed the subscript in the second term in the left-hand side of (1005), which was
misprinted in [5]).

Another possible reduction of the evolution equations (98) with M = 2 obtains by setting

u(x,t) vl(x,t)) w(x, t) izl(x,t)>

va(x, 1) u(x,t) iz0(x, 1) —w(x, 1) (101a)

U, 1) = ( W) = (

with the three (scalar) auxiliary functions w(x, t), z;(x, t) and zp(x, ¢) all real, w(x,t) =
w*(x, 1), z1(x, 1) = z7(x, 1), 22(x, 1) = z5(x, 1) and

co—(4 o co = (b b (101b)
ia2 —a ’ b2 —ib ’
with the six constants a, ai, as, b, by, by as well all real, a = a*, a1 = af,a = a3,

b = b*, by = b}, b, = b3. The corresponding evolution equations then read

u; —iaxvy —iavy + bovy, + biva, = (2201 + 21 02), (102a)
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v, — 2avy — 2iaju + 2ibviy + 2bju, = 2(wvy +izqu), (102b)
vo; + 2avy — 2iaru — 2ibvyy + 2bou, = 2(—wv, +iz21), (102c¢)
wy = 2s Re[(b1v5 — byv])ul, (102d)
Z1x = 2s[2bRe(uvy) — by Im(v,v3)], (102¢)
Zox = —25[2b Re(uv}) + by Im(vpv})]. (102f)

The last three of these equations must of course be supplemented by the boundary conditions
w(—00,1) = z1(—00, 1) = zo(—00, 1) = 0. (102¢)

Let us mention that the dispersion relation associated with the linear part of this system
of evolution PDEs (namely, the expression w(k) such that each of the three dependent
variables u(x, t), v;(x, t) and v,(x, t) is proportional—with a #- and x-independent constant
of proportionality—to exp{i[kx — w(k)t]} in the ‘plane-wave’ solution of the linear part of
this system, obtained by setting w = z; = zp = 0) has three branches, a trivial one, w (k) = 0,
and two others,

w(k) = £2y/(b1by — b2)k> — (a1by + azby — 2ab)k + aya, — a2, (103a)

which are however not dispersive: indeed the requirement that this expression yields a real
value of w (k) for all real values of k imposes the three conditions

biby > b7, ajay > a*, (biby — b (@1ar — a*) > 1(a\by + azby — 2ab)?,
(103b)

and it can be shown that, if the first two of these three inequalities are satisfied, then the third
one cannot hold.

2.4. Reductions of fourth type
The fourth type of reductions (see (28d)) reads
07, =Ux,1), 0 (x, 1) = SYUT (x, 1), (104a)
WHx, 1) = =SEWH T (x,1)§E). (104b)
It is applicable provided the constant matrices C/)® satisfy the restrictions
CWHWE — _(_)js(:t)c(j)(:t)Ts(i)’ j=0,1. (104c¢)

The general form of the corresponding integrable system of matrix PDEs reads (see (47))

U, — [C(O)(—)U _ Uc(O)(+)] + [C(l)(—) U, — ch(l)(+)] = WU + UW(+), (1054a)
W® = [cD® sHyTsOyy, (105b)
W)ﬁ—) =[CVYO usPUuTs. (105¢)

Let us now consider a few special cases, corresponding to specific choices of the two positive
integers N and N7,

For N® =1 and N™) = D the matrix evolution equations (47) can be reformulated as
follows (see (48)):

- COw+cVul =ww, (106a)
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w, =[cV, wwTs). (106b)

Here the (column) D-vector @ = ' (x, 1), having the D components uy, ..., up, is the
main dependent variable, the transposed (row) D-vector w7 = w7 (x, t) has of course the D
components Uy, ..., up, and the D x D matrix W = W (x, ¢t) is the auxiliary variable, uniquely
defined by the last equation (106b) together with the usual boundary condition, see (26). These

evolution equations (106) obtain from those written above (105) via the assignments

U=, W =w, w® =0, (107a)
§® =1, §C) =8, CO® = ), CHE — W) 4 o) (107h)

with ¢/) being scalar constants, which imply via (104) that the two constant D x D matrices
C") which appear in these evolution equations satisfy the symmetry conditions

ch = —(—)jSC(j)TS, j=0,1, (107¢)
and the auxiliary dependent variable W = W (x, ) (which is also a D x D matrix) satisfy the
symmetry condition

W=—-swTs. (107d)
The constant D x D matrix S appearing in these evolution equations is diagonal and made up
of (a priori arbitrary) signs:

S = diag[sy, ..., spl, st =1, k=1,...,D, (107e)

and moreover, without significant loss of generality, we can assume the constant D x D matrix
CD to be traceless,

Trace[CV] =0 (107 f)

(of course C© is as well traceless, since all its diagonal elements vanish, see (107¢)
with (107¢)).

Let us point out that these integrable PDEs (106) should be compared with (48), with
which they coincide if the vector #(x, t) is real, u(x, t) = u*(x, t).

For D = 2, via the assignments

— _ (ur(x, 1) _ 0 —siw(x, 1)

w(x, 1) = (uz(x, t)> : Wix, 1) = <S2w(x’ f 0 ) (108a)
_ S1 O ) _ O Sl& 1) _ _b SIE

= (O sz) ’ = (—sz& 0 ) ’ = b b ) (1086)

which clearly satisfy the symmetry requirements (107) (without entailing any additional
restriction on the constants @, b and b), these evolution equations (106) take the following
form:

Uy — s1auy — bug x +s11~9u2,x = —s5 Wiy, (109a)

Uy +$2d@ Uy + bus  + sobuy , = srwuy, (109b)
_ 7 2 2

Wy = 2bs sau Uz +b(s1u1 — szuz), (109¢)

with the latter equation supplemented by the boundary conditions

w(—o00,t) =0. (109d)
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Provided a is real and nonvanishing, a # 0, the signs s; and s, are equal so that s;s, = +,
and b and b are as well real and do not both vanish, this system is easily seen to be dispersive,
namely to possess (in the linear limit obtained by setting w(x, t) = 0) the solution

uj(x,t) = Ajexpfilkx — w(k)t]}, j=12, (110a)

with the ‘relativistic’ dispersion relation

w(k) = £/ (b2 + B)K? + a2, (110b)

which is then clearly real for all real values of k.

Let us note that, if @ is real, @ = a*, and b vanishes, b = 0, this integrable system of
PDEs (109) coincides with (54) provided the dependent variables are also restricted to be
all real, uy(x,t) = uf(x, 1), ur(x,t) = us(x,t), w(x,t) = w*(x, ). As a consequence the
additional reduction of the system of PDEs (109) to the single scalar PDEs (66) and (69)
applies as well here.

Returning to (105) we now note that in the ‘square’ case N = N7 = M the following
additional reduction,

§E — sil, cOE® — C(O), cHEH — :FC(]), W(i)(x, 1) =FW(x,t),
(111a)

is compatible with the conditions (104), provided the M x M matrices C © and W (x, 1) are
antisymmetric, the M x M matrix C (OB symmetric, and the M x M matrix U (x, t) satisfies
the symmetry property U (x, t) = 5U (x, t), namely it is symmetric if the sign § is positive
and instead antisymmetric if the sign § is negative:

CcOT = O, cW =W, U'(x,t) =5U(x,1), W'(x,t)=-W(x,1).
(111b)
The corresponding integrable system of matrix PDEs reads
U —[CP Ul+{CcV, U} =W, U], (112a)
w, =s[cV, U?, § = §sp5_. (112b)

For M = 2 this equation is nontrivial only if § = +, when via the assignments

fur(x, ) v(x, 1) _ 0 -1
U(x,t) = <v(x, 0 s, t)) , W(x,t) =w(x,t) (1 i (113a)
0 -1 b ¢
©) _ 1 _

C _a<1 0), C _<c —b)’ (113b)

it reads
uy; +2av +2buy, +2cv, = —2wv, (114a)
Uz — 2av — 2buy, + 2cv, = 2wv, (114b)
v —a(uy —up) +c(uiy +uzy) = wuy — uz), (114¢)
wy = s(uy +ur)[c(uy —uy) — 2bv]. (114d)

Note that this system of PDEs coincides with the (permissible) reduction of the system (100)
when one requires it to only contain real quantities (consistently with the identification of
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symmetrical matrices with Hermitian matrices in the real context). Moreover this system
(114) is equivalent to the system (89) of one PDE and two ODEs, via the change of dependent
variables

Ve = —(uy +uy), Y, = 2b(uy — uy) +4cv, (115a)
z1 =2(w +a), us = —2c(uy; — uy) +4bv, (115b)

provided one also sets b*> + ¢ = 1/4.
Note that by inserting the ‘plane-wave’ solution

v(x, t) = Bexp{ilkx — w(k)t]}, uj(x,t) = Ajexplilkx —w(@)t]}, j=12,
(116a)

in the linearized version of this system (114) (namely, in its first three PDEs, with w(x, t) = 0)
one gets three determinations for w (k), a trivial one, w (k) = 0, and the ‘relativistic’ expression

w(k) = £2/(b% + k2 + a2. (116b)

It is thus seen that, if the constants a is real and does not vanish, a = a* # 0, and the constants
b and c are such that the sum of their squares is positive, b*> + ¢*> > 0 (as is certainly the case if
both these constants are real and at least one of them does not vanish), then this system (114)
is dispersive.

Additional reductions of this integrable system of PDEs (114) are possible, but the
linearized versions of these reduced models are generally not dispersive, and therefore
(perhaps) less interesting. For instance the particular reduction

ur(x, 1) = u(x, 1), ur(x, 1) = [u(x, NI, (117a)
which is compatible with this system provided the constants a and b are imaginary, the constant

c is real, and the two dependent variables v(x, t) respectively w(x, t) are real respectively
imaginary,

a=—a", b= —-b", c=c",
(117b)
v(x,t) = [v(x, D], w(x, 1) = —[w(x, H]",
yields the model
u; +2bu, +2cv, = —2(a + w)v, (118a)
v, +2c Relu, ] = 2i(a + w) Im[u], (118b)
w, = 4s Re[u]{ic Im[u] — bv}, (118¢)

which models wave propagation only if |c| > |b| and a = O (see (116b) with (1170 )).

The last reduction of (112) we report is characterized by M = 3 and s_ = —, so that the
3 x 3 matrix U (x, 1) is antisymmetric, as well as W (x, t) and C@, see (111b). Hence in this
case each of these three matrices can be conveniently parameterized via the three components
of a 3-vector, according to the standard assignment

0 us(x,t) —uy(x,t)
U(x,t) = | —us(x,t) 0 ui(x, 1) |, (119a)
ur(x,t) —uy(x,t) 0
0 —z3(x, 1) z2(x,0)
Wi(x,t) =1 z3(x,1) 0 —z1(x, ) |, (119b)

—22(x, 1) zi(x, 1) 0
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0 —as ay
cCO=1as 0 —a]. (119¢)
—ay aq 0

We moreover assume the symmetric 3 x 3 matrix C‘! to be dyadic, hence also parameterized
by the three components of a 3-vector,
b?>  biby bibs
CV =bb" = |biby b} bibs|. (119d)
bibs byby b3
This last assignment is more restrictive than it would be necessary in order to guarantee the

symmetric character of C", but it allows us to express the integrable system of coupled
PDEs (112) in the following neatly covariant form:

iy =ani+b-ii)b— (b b, +7 Al (120a)

Zo=sG-ib A, (1200)
where s = —s, is an arbitrarily assignable sign, and we assume as usual that the ODE (120b)
is supplemented by the boundary condition

Z(—00,1) = 0. (120¢)
Note that these equations are real, and therefore may possess real solutions, if the 3-vector a
is real, a = a*, and the 3-vector b is either real or imaginary, b=b"orb=—b"

The d1spers1on relation associated with the linearized version of this system is obtained
of course by requiring that the plane wave u(x, t) = A exp{i[kx — w(k)t]} satisfies the linear
part of the first (120a) of these two PDEs, namely this PDE (120a) with Z(x, ) = 0. Its three
branches correspond to the three roots of the cubic equation

® — 2b%ka? + (b*k* — aPw + [a*b* — (@ - b) Tk = 0, (121)

where a =a-aand b’ = b b. Two special cases are worth noticing. (i) If the two 3-vectors
G and b are orthogonal, a - b= 0, these three determinations of w (k) read

w (k) = bk, w(k) = $b°k £,/ 1b*? + a2 (122)

Hence in this case the linearized system is dispersive, provided the squared modulus a =ad-a
of the 3-vector & is positive and the squared modulus b’ = b - b of the 3-vector b is either
real or zmagznary (which is certainly the case if the 3-vector a is real and it does not vanish,
a=a*# 0 and the 3-vector b is either real or imaginary, b=>borb= —b* when the
integrable system (120) admits real solutions, see above). (ii) If the two 3-vectors a and b are
parallel, so that a®b? — (@ - b)* = 0, the three determinations of w (k) read

w(k) =0, k) = b’k + a, (123)
hence in this case the linearized system is not dispersive.
Let us now cons1der the special case of the system (120) in which the two 3-vectors a and

b are orthogonal, a - b = 0. We then introduce the three orthogonal unit vectors @, b and & by
setting

i = aa, b = bb, e=anb, (124)

and represent the two 3-vectors u(x,t) and Z(x, t) via their components along these unit
vectors:

U= uid + urb +usé, 7 =710 + z3C. (125)
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Note that Z(x, t) has no component in the b direction, as implied by (1205) with (120c). The
system (120) takes thereby the following form:

uyy = —b’uy, — 73, (126a)
Uz = —ausz +u1z3 — u3zi, (126b)
uy = auy — b2us, +urzy, (126¢)
21x = sb’usus, 230 = —sb’ujuy. (126d)

Note that, if a = 0, one can introduce an additional reduction (clearly compatible with these
equations) by setting

u3('x?t):Z1(-x5t)=07 (127a)
or alternatively
ui(x, 1) = uz(x, 1), zi(x, 1) = —z3(x, 1), (127b)

whereby this system (126) reduces again (with an appropriate choice of the parameters k,,, @,
and g,) to the system of three first-order PDEs (57).

3. Single-soliton solutions: boomerons and trappons

The ‘single-soliton’ solution for the general matrix evolution equation (24) with the boundary
condition (26a) can be easily obtained via standard techniques from the Lax pair given in the
next section, or from the results of section 3 of [5]. It reads as follows:

& _ pexp(Fikx) AP (1)
O D = il — T} (128a)
W (x, 1) = p(sign[Re(p)] + tanh{p[x — EOINICVF, A® @) AP (1)], (1285)

with p and & being scalar constants (x- and #-independent, possibly complex—but hereafter we
restrict for simplicity attention to the case in which these numbers are both real and positive,
entailing of course that sign [Re(p)] = 1), and with £(¢) the single scalar function that (if
real, as it is the case for the simple cases to which our attention is hereafter confined) clearly
identifies, see (128) and below, the position of the soliton as it evolves over time. The two
‘amplitude’ matrices A®)(¢) are constrained by the scalar condition

Trace[AP (AT ()] = —1. (129)

Moreover, in the cases considered below the two matrices A® (¢) are dyadic, and the vectors
that characterize their dyadic structure (see below) may be interpreted as those that identify
the (time-dependent) ‘polarization’ of the soliton as it evolves over time. Note however that
in some cases a simple dyadic structure of the two matrices A (¢) is incompatible with
the reduction under consideration, entailing a more complex structure of the ‘single-soliton’
solution.

The function & (¢) is given by the following formula:

§@) =§60)+p@), (130a)

0
p(t) = 2p) ' log [&} ,

1306
70 (1300)
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F(@&) = (bPOT©0) exp (~T8) exp (T1)p OO (0))
x (BT ) exp (~I'P1) exp (TF1)6M D (0)), (130c)
) = cO6 4 (ik + sp)c V), s =+, s’ =+. (130d)

Here CY®™ | respectively CY(7) | are of course the N x N®| respectively N x N,
constant square matrices that appear in the matrix evolution equations (24), while the
two (column) N®-vectors b®™® (0) respectively the two (column) N -vectors b ) (0)
characterize the ‘initial polarization’ matrices A® (0) of the soliton via the following dyadic
relations (valid for all time, and in particular at r = 0):

A(+)(t) — b(+)(+)(t)b(+)(*)T(t)’ A(f)(t) — b(*)(*)(t)b(*)(ﬂT(t)_ (131)

These vectors b®C) (1), bO® (¢) respectively 57 (¢) being N -dimensional respectively
N)-dimensional, are restricted by the (single, scalar) ‘normalization condition’ (valid for all
time!)

(b(+)(—)7b(—)(—))(b(—)(+)Tb(+)(+)) — (132)

(see (129) and (131)). Let us re-emphasize that in the above equations, and throughout, the
symbol T denotes transposition, hence it transforms column vectors into row vectors, and of
course the (scalar) product of a transposed vector (on the left) times a vector (on the right) is
a scalar, while the product of a vector (on the left) times a transposed vector (on the right) is
a dyadic matrix.

To complete our display of the single-soliton solution (128) we must exhibit the time-
evolution of the two (dyadic matrix) amplitudes A® () (where A® (¢) respectively A (¢) is
of course a dyadic N x N respectively N x N, matrix), or equivalently, see (131),
of the four “polarization vectors’ b®)¢)(¢). It reads (see (130d))

b (1) = exp[$po () + Tt ]pV0(0), s =+, (133a)
OV (1) = exp [Lpp(t) — TV ]pO(0), s = =, (133b)

of course with p(¢) defined by (130b) with (130c) and the matrices FS(J/) defined by (130d).
These expressions imply that the normalization condition (132) remains true for all time if it
holds at the initial time ¢ = O (this is not quite obvious, but is in fact true, as can be easily
verified).

Let us now tersely discuss the asymptotic behaviour of this single soliton solution as the
space coordinate x diverges to the left and to the right, x — Foo, and also its asymptotic
behaviour in the remote past and future, namely as ¢t — Foo.

The behaviour as the space coordinate x diverges, which characterizes the shape of this
solution, is immediately evident from the formula (128): the components Q™) (x,?) are
localized (‘solitonic’ shape), namely they vanish asymptotically, Q® (o0, ) = 0, while
the components W™ (x, t) have a ‘kink-like’ shape, in particular they vanish to the left,
W& (—c0, t) = 0, and tend instead to a finite (generally time-dependent) value to the right,

WH (00, 1) = 2p[CVD | AD AP (1)]. (133¢)

The asymptotic behaviour in time requires a somewhat more detailed discussion, which
entails going, up to minor variants, over developments already reported in [5]. Throughout
this discussion we assume for simplicity that both the matrices Fs“'), see (130d), and the ‘initial
data’ characterizing this single soliton solution, are generic. In particular we assume that the
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matrices I'®? are diagonalizable and that their eigenvalues y*?™, and the corresponding
eigenvectors XS(S/)(”),

&)y O — 3, ©w 5 ) n=1,....NV, s =+, (134a)
r“)T OO =y W™ a=1,... NV, s=+ (134

can be ordered so that
Re[y D] < Re[y)®] < Re[y V], n=2,. N1, s=+ s =4
(135)

entailing a unique definition of the first one, respectively the last one, of these eigenvalues, as
being characterized by having the smallest, respectively the largest, real part. In the following,
without significant loss of generality (since the dependence on the trace of these matrices can
be factored out via a trivial transformation of type Q™ (x, 1) — Q® (x, t) exp(at + bx) with
a and b appropriate scalar constants), we restrict for simplicity attention to matrices C©)
and CV® s = 4, that are traceless, implying that the matrices T'*", see (130d), are as well
traceless,

Trace[T*"] = 0, (136)

and this condition, together with the ordering convention (135), of course entails that the first
eigenvalue has a negative real part and the last one a positive real part,

Re[""] <0, Re[ys(“/)“"“/))] >0, s =+, s'==+. (137)

It is then easy to see that the following formulae characterize the asymptotic behaviour of
the ‘position’ Re[£(¢)] and ‘amplitude” A®) (¢) that enter in the single-soliton solution (128):

E(t) — Ex+Var, (138a)
—+o00
1 :tyi
=§0)+—lo [ } (138b)
£+ =§ 25 %8| 28,
Ve =2, (138¢)
2p
AV — explisusnAL, 5=+, (139a)

. + 172 )
Ag):[zp;j (FVTPIE ) ((FIVITPIE @) P, s =% (139)

PO = yON y 0T PY) = y©OM y HNNT s =+ (139¢)

Here we used the shorthand notations
+) N 1 _
Vs = Vv(+)(N )+ )/( )( ) yf;)( ) _ Vs( )(1)’ s =, (140)
DT g (— _ _
B, = (Xif)( )T p( )(S)(O))(Xi ST p(+)( S)(O)) .
g (s) § —S)YNCNT , (— s
X (xOITEEO @) VNI 0)) -
(. )(I)T (s (N (=YDT (1) (=s')  (—s")(N)
LG G e,

X-g's Xs's —s's

s =+, (141)
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with (to compactify the notation) C\V™*) = c) and V) = T and

! ® —) (N 1 _
py = = [y W Y el Y TO P ), P (142)

2
We are of course assuming that the ‘initial data’ for this single-soliton solution are as well
generic, entailing that none of the scalar products appearing in the right-hand sides of (1390)
and (141 ) vanish.
Let us end this section with two remarks.

Remark 3.1. Via the linear coordinate transformation (21) the general form of the evolution
equation (24) becomes

dQ;i) F C[C(l)(i) Q;i) _ thi)c(l)(:F)] +bQ)(~Ci) F a[C(l)(i) Q)(;i) _ Qéi)c(l)(:F)]
_ [C(O)(i)Q(i) _ Q(i)c(o)(iF)] — :F[W(i)Q(i) + Q(i)W(ZF)]’ (143a)
CW_(:E) +aW(i) — [C(l)(i), Q(i)Q(jF)]. (143b)

7 X

The above remark is mathematically rather trivial, but it allows one to capture a larger
set of evolution equations of possible applicative relevance: note that the general structure of
this system of ODEs (143) is always characterized by the presence of (partial) derivatives of
first-order only, both with respect to the (new) time variable 7 and to the (new) space variable
X. Of course an analogous transformation can be applied to all the integrable systems of
nonlinear PDEs obtained from the general matrix PDE (24) by reductions, see the preceding
section 2; their explicit display is left as an easy exercise for the diligent reader.

Remark 3.2. Of course the single-soliton solution appropriate for the integrable class of
nonlinear matrix PDEs (143) are obtained from the formulae written above, see (128) and the
relations following it, via the independent-variable transformation (21). This entails that the
analysis of the shape of the single-soliton solution, as a function of the (new) space variable
X (for fixed 7), is then (partially) modified: in particular it is clear that, while the conclusions
about the localized character of the components Q™) considered as functions of ¥ at fixed
i are generically unchanged (Q® vanishes at both spatial ends, namely as ¥ — =00),
it is now clear from (128b), (138a) and (21) that a necessary condition to guarantee that
the components W& be as well localized (namely, vanish asymptotically at both ends, as
X — oo for fixed 7) is (see (138a)) that ¢ # 0, namely that also |[f| —> o0 as ¥ — F00,
entailing that in the limit the matrices A®)(¢) get replaced by their asymptotic expressions
(139). The localization of W™ (x, ) is then entailed by the additional condition that the
commutators [CD®), Py Pfs)] vanish. A condition sufficient to guarantee that this happens
is the commutativity of the two matrices C@®) and CV® (which however may also cause
the disappearance of the boomeronic effect).

These two remarks are important inasmuch as they demonstrate that the integrable class
of (systems of) evolution PDEs considered in this paper include equations the single-soliton
solutions of which may have some components which are localized while other components
are not localized (they are kink-like), as well as single-soliton solutions that feature instead
components which are all localized.

The discussion of the adaptation of these results—whenever possible—to the reduced
equations discussed in section 2 is for the moment left as an instructive exercise for the
diligent reader.
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4. The Lax pair

The Lax pair which underlies the integrable character of the (systems of) nonlinear PDEs
discussed in this paper is easily obtained from that given in [S]. It reads, in self-evident
notation,

W, (x,t;A) =[Ao + Q(x, )W (x,t; A), (144a)
U, (x,1;0) ={CO —aW(x, 1) +o[CV, O(x, )] + 22C V)W (x, 1; 1), (144b)

where of course W is an N x N matrix and A is the spectral parameter (a scalar). It is indeed
easy to verify that precisely the system of N x N matrix nonlinear PDEs (10) is yielded by
the requirement that this Lax pair (144) satisfies, for all values of the spectral parameter X, the
compatibility condition

Wie(x, 13 4) = W (x, 15 4), (145)

namely by the requirement that the partial 7-derivative of the right-hand side of (144a) equals
the partial x-derivative of the right-hand side of (144b).

5. Outlook

As already mentioned above, several standard additional results can be obtained for all the
integrable (systems of) nonlinear PDEs identified in this paper. This shall eventually be
done by us and/or by others, especially for those instances of these systems that turn out to
have applicative relevance. To make progress towards identifying such instances we plan to
revisit soon, if need be also in the context of nonlinear matrix PDEs, the multiscale expansion
technique (see, for instance, [7]) that provides a convenient avenue to identify equations that
possess both properties, to be integrable and to be widely applicable [1].
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